Enhanced chondrogenic responses of human articular chondrocytes onto silk fibroin/wool keratose scaffolds treated with microwave-induced argon plasma.
نویسندگان
چکیده
Silk fibroin (SF) is a natural, degradable, fibrous protein that is biocompatible, is easily processed, and possesses unique mechanical properties. Another natural material, wool keratose (WK), is a soluble derivative of wool keratin, containing amino acid sequences that induce cell adhesion. Here, we blended SF and WK to improve the poor electrospinability of WK and increase the adhesiveness of SF. We hypothesized that microwave-induced argon plasma treatment would improve chondrogenic cell growth and cartilage-specific extracellular matrix formation on a three-dimensional SF/WK scaffold. After argon plasma treatment, static water contact angle measurement revealed increased hydrophilicity of the SF/WK scaffold, and scanning electron microscopy showed that treated SF/WK scaffolds had deeper and more cylindrical pores than nontreated scaffolds. Attachment and proliferation of neonatal human knee articular chondrocytes on treated SF/WK scaffolds increased significantly, followed by increased glycosaminoglycan synthesis. Our results suggest that microwave-induced, plasma-treated SF/WK scaffolds have potential in cartilage tissue engineering.
منابع مشابه
RGDS sequences genetically induced in the fibroin light-chain protein operate positively for cartilage tissue synthesis
Introduction: In vitro generation of articular cartilage tissues requires a large number of cells maintaining the chondrogenic phenotype during in vitro culture. Our previous studies showed that chondrocytes cultured in/on a silk fibroin sponge could proliferate with maintaining their phenotype [1] and exhibited a maximum value of the adhesive stress, which could not seen when using a glass sub...
متن کاملDirect-Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications
Three–dimensional, microperiodic scaffolds of regenerated silk fibroin have been fabricated for tissue engineering by direct ink writing. The ink, which consisted of silk fibroin solution from the Bombyx mori silkworm, was deposited in a layer-by-layer fashion through a fine nozzle to produce a 3D array of silk fibers of diameter 5 mm. The extruded fibers crystallized when deposited into a meth...
متن کاملComparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro
Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...
متن کاملOriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering.
A novel design of silk-based scaffold is developed using a custom-made winding machine, with fiber alignment resembling the anatomical criss-cross lamellar fibrous orientation features of the annulus fibrosus of the intervertebral disc. Crosslinking of silk fibroin fibers with chondroitin sulphate (CS) was introduced to impart superior biological functionality. The scaffolds, with or without CS...
متن کاملFibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture
BACKGROUND In our previous study, we successfully developed 3-D scaffolds prepared from silk fibroin (SF), silk fibroin/collagen (SF/C) and silk fibroin/gelatin (SF/G) using a freeze drying technique. The blended construct showed superior mechanical properties to silk fibroin construct. In addition, collagen and gelatin, contain RGD sequences that could facilitate cell attachment and proliferat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial organs
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2010